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Abstract A relation between the supersymmetry approach and the asymptotic itera-
tion method is presented. A new form of the wave function is introduced. This approach
has been successively employed to solve the Schrödinger equation for the Kratzer and
Morse oscillators. The exact energy levels and the corresponding eigenfunctions have
been calculated.

Keywords Supersymmetry quantum mechanics · Asymptotic iteration method ·
Schrödinger equation · Kratzer oscillator · Morse oscillator

1 Introduction

Analytical solution of the Schrödinger equation for given potentials plays a very impor-
tant role in quantum mechanics and theoretical spectroscopy. Unfortunately, only for
a few potentials such as the Kratzer-Fues, Pöschl-Teller, Morse with zero angular
momentum, Coulomb and harmonic oscillators this equation can be solved exactly. The
Schrödinger equation can be solved using several alternative approaches. For example:
the supersymmetry [1], the Nikiforov–Uvarov method [2], the Pekeris approximation
[3], the shape invariance [4], the hypervirial perturbation method [5], the shifted and
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modified shifted 1/N expansion methods [6], the variational method [7], the asymptotic
iteration method (AIM) [8] and the perturbation ladder operators method [9].

Recently, it has been shown that the formalism of the (AIM) can be profitably
employed to determine the exact analytical solutions of the Schrödinger equation
and the corresponding eigenvalue. This method has been used to solve differential
equations which are important for quantum mechanics. Successful application of this
method have been made for many anharmonic oscillators. Barak et al. [10] presented
the analytical solution of the radial Schrödinger equation for the Kratzer oscillator and
the exponential cosine screened Coulomb potential [11]. Barakat et al. [12] applied
this method to obtain the exact solutions of the one-dimensional Schrödinger equa-
tion with the Morse potential. For the numerical illustration these authors calculated
the vibrational energies of the 7Li2 molecule. The results are in agreement with the
ones published in the literature. Al-Dossary [13] obtained an analytical eigenvalue
for the rotating Morse oscillator by means of the asymptotic iteration method. For
various diatomic molecules the energy eigenvalues have been calculated and results
are compared with the supersymmetry, the Nikoforov-Uvarov, the modified shifted
expansion 1/N method and the hypervirial perturbation method. The numerical ener-
gies calculated in this work are in good agreement with the numerical results obtained
for the Morse potential with the centrifugal term. On the other hand Fernandez [14]
using the AIM procedure obtained the solution of the Schrödinger equation with the
sextic anharmonic oscillators. Recently, Boztosun and Karakoc [15] derived a general
formula which simplifies the original asymptotic iteration method. Moreover, these
authors showed a connection between AIM and Nikiforov-Uvarov method to solve
the second order ordinary differential equations in the analytical way.

In the past decade the concept of supersymmetry quantum mechanics (SUSY QM)
has been found to be very useful in analyzing the bound-state spectra. The key idea
in SUSY QM consists in generating very useful relationships of the eigenvalue and
eigenfunctions of the hierarchy of SUSY-partner Hamiltonian. Moreover, note that the
Hamiltonian of the Schrödinger equation can be always factorized with help of the
annihilation and creation operators. The factorization method was first introduced by
Schrödinger [16] to solve the eigenvalue problem with the Coulomb potential alge-
braically. However, Infeld and Hull [17] generalized this method and successfully
obtained a wide class of solvable potentials by considering different forms of the
factorization. In this way a general review on the supersymmetry approach and the
procedure of construction of a SUSY Hamiltonian hierarchy in order of a complete
spectral resolution it is applied for various potential energy functions. The formalism
of SUSY QM has been used by Fernandez et al. [18] for calculating the accurate
energy eigenvalues of the Schrödinger equation. The SUSY Hamiltonian hierarchy
was investigated by Sukumar [19] to solve the Schrödinger equation with the Pöschl-
Teller potential. Various applications of SUSY QM in the theoretical spectroscopy
were reported by Hamaker and Rau [20]. Also Bessis and Bessis [21] using concepts
of the supersymmetry approach proposed a new algebraic procedure for the analyti-
cal solution of Schrödinger equation. Their formalism is based on the solution of the
Riccati equation associated with a given wave function whose form is specific to each
factorization type. Garnet Blado [22] using the fundamental concepts of the supersym-
metric quantum mechanics has shown that the eigenvalues and radial eigenfunctions
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for the ring-shaped Hartmann potential can be obtained exactly. On the other hand
Roy and Roychoudhury [23] derived the solutions of the Schrödinger equation with
the non polynomial oscillator within the supersymmetry approach

It is appropriate at this point to digress a bit and talk about the shape invariant
potential method. On the basis of the fundamental SUSY QM, Gendenshtein [4]
introduced this method to quantum mechanics. It has recently been shown that the
above-mentioned method has been profitably applied to many quantum mechanical
problems. With the help of shape solvable invariant potentials the Schrödinger equa-
tion can be solved analytically. Cooper et al. [24] using the shape invariant potentials
applied an operator transformation for the Pöschl-Teller potentials. In this works these
authors also found the Natanzon class of solvable potentials. Also Stahlhofen [25]
showed that the shape invariance condition and the factorization condition for Sturm-
Liouville eigenvalue problems are equivalent.

Recently, the formalism of SUSY has been extended for the semiclassical WKB
method [26]. This method is one of the most useful approximations of the energy
eigenvalues of the Schrödinger equation. It has a wider range of applicability than the
perturbation methods and 1/N expansion within SUSY QM [27]. Using the ideas of
SUSY with the lowest order WKB method Comtet et al. [28] have constructed the low-
est order SWKB quantization condition and proved that it yields energy eigenvalues
which are not only exact for large vibrational quantum numbers. Moreover, Inomata
and Junker [29] obtained the lowest order SWKB quantization condition in case SUSY
is broken. Recently, it has been shown [30,31] that for many classes of shape invariant
potentials and the Pöschl-Teller potential this lowest order SWKB calculation gives
the exact solvable spectrum.

The main purpose of the present work is to employ the supersymmetric quantum
mechanics to a new approach of the asymptotic iteration method. We show that our
approach can be successfully used to solve the Schrödinger equation for the Kratzer
and Morse oscillators. The work is organized as follows. In the second section we pres-
ent an improved version of the asymptotic iteration method which has been developed
by Boztosun and Karakoc [15]. In the third section the formalism of relation between
the supersymmetry method and the asymptotic iteration method is developed. In the
following section we consider the application of this approach to the Schrödinger equa-
tion for the rotating Kratzer and Morse oscillators. For this potentials we calculate the
energy eigenvalues and corresponding wave functions.

2 Basic concepts of the improvement asymptotic iteration method

Recently, Boztosun and Karakoc [15] derived a general formula which simplified
the original formalism of the asymptotic iteration method to find energy levels and
wave functions for the analytical solvable potentials [8]. Their concept is based on the
conversion of the homogenous second-order differential equation

d2�(r)υ

dr2 = λ0(r)
d�(r)υ

dr
+ α0(r)�(r)υ (1)
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to the equation of hypergeometric type. The functions λ0(r) and α0(r), are sufficiently
differentiable. For given exactly solvable potential energy functions the Schrödinger
equation can be converted into this form. In this sense the Eq. 1 after employing the
following forms for λ0(r) and α0(r) [15]

λ0(r) = − f (r)

σ (r)
, α0(r) = − εn

σ(r)
(2)

can be transformed to the form [15]

d2�(r)υ

dr2 = − f (r)

σ (r)

d�(r)υ

dr
− εn

σ(r)
�(r)υ . (3)

Note that σ(r)is polynomial at most of second degree and f(r) is a first degree at most
polynomial. However, ευ is a constant which includes the energy eigenvalue. Adopt-
ing to this approach the quantization conditions of the standard asymptotic iteration
method [8]

δk(r) = λk(r)αk−1(r) − λk−1(r)αk(r), k = 1, 2, 3, . . . (4)

the energy eigenvalues can be determined using the following relationship [15]

ευ = −υ
d f (r)

dr
− υ(υ − 1)

2

d2σ(r)

dr2 (5)

in which υ = 0, 1, 2, . . . and denotes the vibrational quantum number. The energy
eigenvalue are calculated from this equation if the problem is exactly solvable.

Accordingly to the original AIM procedure the functions λk(r) and αk(r)in Eq. 4
are calculated by the following recurrence relations [8]

λk(r) = dλk−1(r)

dx
+ αk−1(r) + λ0(r)λk−1(r) (6)

αk(r) = dαk−1(r)

dr
+ α0(r)λk−1(r) (7)

This method can be successively applied to generate the wave function using the
following wave function generator [15]

�(r)υ = 1

ρ(r)

dυ

drυ

[
συ(r)ρ(r)

]
(8)

in which ρ(r) is a solution of the following first-degree differential equation [15]

d

dr
[σ(r)ρ(r)] = f (r)ρ(r) (9)
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3 The supersymmetry and asymptotic iteration method

In this chapter we turn our attention to the relation between the method described
method in the previous section with supersymmetry method in quantum mechanics
(SUSYQM). The crucial point in the approach proposed is the assumption that the
wave function can be specified in a new form

	(r)υ = exp

[∫
W0(r)dr + β(r)

]
�(r)υ (10)

in which W0(r) in SUSYQM [26] is interpreted as Witten superpotential [32] which
permits construction of the supersymmetric Schrödinger equation straightforward
to analytical solutions. �(r)υ is a new function to be determined with the prop-
erty �(r)0 = 1. We assume the function β(r) in the form ensuring that the wave
function leads to correct asymptotic value which may have physical interpretation.
It should be emphasized that assuming the wave function in the form of 	n(x) =
exp

(∫
W0(x)dx

)
gn(x) = 	0(x)gn(x) [34] is incorrect as for any vibrational state

is contains the energy of the ground state. Consequently, it does not have physical
interpretation. The expression for the wave function derived in this work is devoid of
this drawback, which will be explained in the following sections of the paper.

It is easy to demonstrate that the Schrödinger equation

[
− h̄2

2m

d2

dr2 + V (r)

]
	 (r)υ = Eυ	 (r)υ (11)

under the following transformation

Wυ(r) = d

dr
ln 	(r)υ (12)

can be transformed into the well-known Riccati equation

− h̄2

2m

[
W 2

υ (r) + dWυ(r)

dr

]
+ V (r) = Eυ (13)

in which V(r) is a given exactly solvable potential. Note that the above equations are
valid for every υ, which means that in particular

− h̄2

2m

[
W 2

0 (r) + dW0(r)

dr

]
+ V (r) = E0 (14)

remains valid for υ = 0. The relationship (14) plays an important role because it per-
mits determination of the superpotential and the corresponding ground state energy
for a given exactly solvable oscillators.
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In order to demonstrate how this method works we introduce in our study the
following structure for the superpotential

W0(r) = γ + ηg(r) (15)

It is clear that the forms of g(r) and W0(r) depend on the representation of the oscillator
potent, hence explicit expressions for this functions will be determined for a given form
of the potential energy function. Having the form of superpotential (15) we substitute
it for the Riccati differential equation. After simple calculation we obtain constants γ

and η. In the next step we define function β(r) and substitute these function with the
superpotential (15) into the wave function (10). If we now insert this function into the
Schrödinger equation (11) we transform this equation to the following second order
differential equation

− h̄2

2m

{
d2�(r)υ

dr2 + 2

(
W0(r) + dβ(r)

dr

)
d�(r)υ

dr
+

[
dW0(r)

dr
+ d2β(r)

dr2

+
(

W0(r) + dβ(r)

dr

)2
]

�(r)υ

}

+ [V (r) − Eυ ] �(r)υ = 0 (16)

For a few exactly solvable potentials this equation can be transformed to the hypergeo-
metric type. Moreover, if we compare this equation with Eq. 3 we obtain the functions
f(r), σ(r)and ευ . Knowing the properties of this functions we can generate the energy
levels and the corresponding eigenfunctions using Eqs. 5 and 8.

4 The Schrödinger equation with the rotating Kratzer oscillator

In this chapter we apply our approach to solve the radial Schrödinger equation with
the rotating Kratzer oscillator

[
− h̄2

2m

d2

dr2 − 2De

(
re

r
− r2

e

2r2

)
+ J (J + 1)h̄2

2mr2

]
	 (r)υ J = Eυ J 	 (r)υ J (17)

in which De is the dissociation energy of the molecule, re is the equilibrium internu-
clear separation, r denotes the internuclear separation and J = 0, 1, 2,… is the rotational
quantum number. The starting point to realize this aim is the assumption of the wave
function in the general form

	(r)υ J = exp

[∫
W0(r)dr + β(r)

]
�(r)υ J (18)

in which the superpotential W0(r) can be specified in the following formula

W0(r) = γ + η

r
(19)
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In this way Eq. 14 with this superpotential may be written

− h̄2

2m

(
γ 2 + η2 − η

r2 + 2γ η

r

)
− E0J = 2De

(
re

r
− r2

e

2r2

)
− J (J + 1)h̄2

2mr2 . (20)

The simple calculation reveals that

η =  + 1 ∨ η = ′ + 1 and γ =
(

− E0J 2m

h̄2

)1/2

∨ γ = −
(

− E0J 2m

h̄2

)1/2

(21)

in which

 = −1

2
+

√
1 + 8m

h̄2

[
Der2

e + h̄2 J (J+1)
2m

]

2
, ′= − 1

2
−

√
1 + 8m

h̄2

[
Der2

e + h̄2 J (J+1)
2m

]

2
(22)

It is readily seen that the wave function vanished at r = 0, corresponding to a strong
repulsion between the two atoms. Moreover, at r = ∞ normalizable solutions in bound
state behave as e−γυ J r . Therefore, it is reasonable to set

β(r) = −γ r − γυ J r, γ =
(

− E0J 2m

h̄2

)1/2

, η =  + 1 (23)

where γυ J = (−Eυ J 2m/h̄2
)1/2

. Putting Eqs. 19 and 23 into 18 leads to

	(r)υ J = r+1 exp (−γυ J r)�(r)v J (24)

If we insert this asymptotic wave function into Eq. 17 we have the second order
homogenous linear differential equations in the form

d2�(r)υ J

dr2 + 2

(
−γυ J +  + 1

r

)
d�(r)υ J

dr
+

⎡

⎣4Derem

h̄2r
− 2γυ J ( + 1)

r

+
( + 1)2 − ( + 1) − 2m

h̄2

(
Der2

e + h̄2 J (J+1)
2m

)

r2

⎤

⎦ �(r)υ J (25)

Making some algebraic manipulations, we reduce the Eq. 25 to the equation given
bellow which is the general type of the Kummer’s equation of the confluent hyper-
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geometric function

d2�(r)υ J

dr2 = 2

(
γυ J −  + 1

r

)
d�(r)υ J

dr
+ 2

[
κ

r
+ γυ J ( + 1)

r

]
�(r)υ J

(26)

where

κ = −Dere2m

h̄2 (27)

Comparing this result with Eq. 3 we realize that

f (r) = −2
[
γυ J r − ( + 1)

]
, σ (r) = r, ευ = −2

[
κ + γυ J ( + 1)

]
(28)

Introducing Eq. 28 into 5 one gets the relation

− 2
[
κ + γυ J ( + 1)

] = υ
d

dr

[
2γυ J r − 2 ( + 1)

]
(29)

which leads to the energy levels. After some calculations the corresponding expres-
sions of the energy eigenvalues turn out be

Eυ J = −2m D2
e r2

e

h̄2

1

(υ +  + 1)2 (30)

As it can be seen that this representation of the energy eigenvalue is identical with the
findings in the work [10].

By means of the concept introduced in preceding calculations we are now ready to
construct the radial eigenfunction for the Kratzer oscillator. Taking into account Eq. 8
we obtain the following forms of the first iterative functions:

�(r)0J = 1 (31)

�(r)1J = f (r) (32)

�(r)2J = f 2(r) + f (r)σ ′(r) + f ′(r)σ (r) + σ(r)σ ′′(r) (33)

�(r)3J = f 3(r) + 3 f 2(r)σ ′(r) + 2 f (r)
[
σ ′′(r)

]2 + 3 f (r) f ′(r)σ (r)

+4 f ′(r)σ (r)σ ′(r) + 5 f (r)σ (r)σ ′′(r) + 6σσ ′σ ′′ (34)

where the sign prim stands for differentiation over the variable r. It is clear that when
the above functions are generalized, �(r)υ J can be specified as follows

�(r)υ J = Cυ J F

[
 + 1 − a2

b
, 2 ( + 1) ; 2br

re

]
(35)
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where a2 = 2mr2
e De/h̄2, b =

√
− 2mr2

e Eυ J

h̄2 , Cυ J = ( + υ + 1)υ
[∏υ−1

l=0 (2υ

+2 + l)
]

and F (c, d; x) stands for confluent hypergeometric (or Kummer) series

defined by the Gamma function

F(c, d; x) =
∞∑

n=0

�(c + n)�(d)xn

�(d + n)�(c)n! (36)

It is obvious that the regularity of the wave function at r = 0 implies that the series
(36) must be a polynomial. This fact leads to

 + 1 − a2

b
= −υ (37)

Consequently, the solution in the arbitrary normalization of the Schrödinger equation
(17) can be written as

	(r)υ J = Cυ J r+1 exp (−γυ J r) F

[
−υ, 2 ( + 1) ; 2br

re

]
(38)

It may be seen than that this result is also in excellent agreement with the findings
achieved with the use the standard version of the asymptotic iteration method [10].

5 The Schrödinger equation with the Morse oscillator

In this section we turn our attention to the solution of the Schrödinger equation for the
Morse oscillator

[
− h̄2

2m

d2

dx2 + De

(
e−2αx − 2e−αx

)]
	 (x)υ = Eυ	 (x)υ (39)

in which α is the range factor, De is the dissociation energy and x = r − re whereas
the parameter re denotes the equilibrium internuclear separation. After changing the
variable [33]

ξ = 2
√

2m De

αh̄
e−αx (40)

we can rewrite the Schrödinger equation (39) in the following form [33]

d2	(ξ)υ

dξ2 + 1

ξ

d	(ξ)υ

dξ
+

(

−1

4
+ υ + λυ + 1

2

ξ
− λ2

υ

ξ2

)

	(ξ)υ = 0 (41)
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where

λυ =
√−2m Eυ

αh̄
, υ =

√
2m De

αh̄
− λυ − 1

2
(42)

Equation 41 can be easily transformed to the following canonical form

d2ϕ(ξ)υ

dξ2 +
(

−1

4
+ υ + λυ + 1

2

ξ
− λ2

υ

ξ2 + 1

4ξ2

)

ϕ(ξ)υ = 0 (43)

in which ϕ(ξ)υ satisfies the following transformation by Liouville

	(ξ)υ = ϕ(ξ)υ exp

[
−1

2

∫
1

ξ
dξ

]
(44)

Let us now construct the wave function. This can be accomplished if we choose

	(ξ)υ = ξ−1/2 exp

[∫
W0(ξ)dξ + β(ξ)

]
�(ξ)υ (45)

in which β(ξ) and �(ξ)υ are unknown functions which we determine in the next part
of our study. Using the following transformation

W0(ξ) = d

dξ
ln ϕ (ξ)0 (46)

one gets the Riccati equation

[
W 2

0 (ξ) + dW0(ξ)

dξ

]
= 1

4
− λ0 + 1

2

ξ
+ λ2

0

ξ2 − 1

4ξ2 (47)

where λ0 = √−2m E0/αh̄.
In order to solve the Eq. 47, we assume the superpotential W0(ξ) in the form

W0(ξ) = γ + η

ξ
(48)

Introducing Eq. 48 into 47 we obtain the following equation

[
γ 2 + 2ηγ

ξ
+ η2 − η

ξ2

]
= 1

4
− λ0 + 1

2

ξ
+ λ2

0

ξ2 − 1

4ξ2 (49)

Equating coefficients in Eq. 49 we arrive at the following relations

γ = 1

2
∨ γ = −1

2
and η =

1 −
√

1 + 4
(
λ2

0 − 1
4

)

2
∨ η =

1 +
√

1 + 4
(
λ2

0 − 1
4

)

2
(50)
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Note that the differential equation (41) has singularities at ξ = 0 and ξ = ∞. In
the vicinity of ξ = 0 the wave function (44) to be proportional to ξλυ and at infinity
this wave function is proportional to e−1/2ξ . This behavior of the solution of Eq. 41
suggests the following relationships

β (ξ) = −ξ + ln ξ−η+λυ+1/2, γ = 1

2
(51)

By the substitution of this function and the superpotential (48) into Eq. 45 we find the
asymptotic wave function in the form

	(ξ)υ = ξλυ exp

(
−ξ

2

)
�(ξ)υ (52)

Therefore, if we substitute the wave function (52) into Eq. 39 this equation can be
transformed in the following hypergeometric equation [33]

ξ
d2�(ξ)υ

dξ2 + (2λυ + 1 − ξ)
d�(ξ)υ

dξ
+ υ�(ξ)υ = 0 (53)

Thus, we see that this equation can be solved using proposed method. By applying the
method described in the previous chapter, which generates the energy eigenvalue, we
obtain the following expression for the functions f (ξ), σ (ξ) and ευ

f (ξ) = 2λυ + 1 − ξ, σ (ξ) = ξ, ευ = υ (54)

Introduction of this functions into Eq. 5 leads to a relation from which we determine
the energy eigenvalue

√
2m De

αh̄
−

√−2m Eυ

αh̄
− 1

2
= −υ

d

dξ
(2λυ + 1 − ξ) (55)

Finally, after elementary calculations we arrive at the energy formula

Eυ = −De

[
1 − αh̄√

2m De

(
υ + 1

2

)]2

(56)

It should be pointed that the expression (56) is fully equivalent to those obtained
previously in the classical work by Landau and Lifszyc [33].

Proceeding along the lines of the method proposed in the previous sections the
function �(ξ)υ can be specified of the Kummer’s confluent hypergeometric function

�(ξ)υ = (−1)υ
�

(
2δυ

α
+ υ + 1

)

�
(

2δυ

α
+ 1

) F (−υ, 2λυ + 1, ξ) (57)

123



J Math Chem (2009) 46:1356–1368 1367

in which δυ =
√

2m De
h̄2 − α

(
υ + 1

2

)
.

Hence the solution in the arbitrary normalization for the Morse oscillator can be
expressed in the well-known form

	 (ξ)υ = (−1)υ
�

(
2δυ

α
+ υ + 1

)

�
(

2δυ

α
+ 1

) ξλυ exp

(
−ξ

2

)
F (−υ, 2λυ + 1, ξ) (58)

6 Conclusions

In this work the relation between the supersymmetry approach and the new version of
the asymptotic iteration method has been developed. This approach can be applied to
generate the solution of the Schrödinger equation. To illustrate the usefulness of the
approach proposed we have found the explicit solution of the Schrödinger equation
for the rotating Kratzer and Morse oscillators. In our study we have also constructed
the Witten superpotential for these oscillators by means of the theory of the differen-
tial Riccati equation. Moreover we have introduced a new general form of the wave
function. We think that this approach can be used to find the solutions of new exactly
solvable oscillators which are widely applied in spectroscopy of rotation-vibrational
diatomic systems.
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